Geotechnical Engineering Report

Sanitary Sewer Extension Project – Phase I
US Route 20
Bellevue, Ohio
June 25, 2010
Project No. N4105037

Prepared for:
City of Bellevue, Ohio
Bellevue, Ohio

Prepared by:
Columbus, Ohio
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. i
1.0 INTRODUCTION .. 1
2.0 PROJECT INFORMATION ... 1
3.0 SUBSURFACE CONDITIONS .. 2
 3.1 TYPICAL SOIL PROFILE ... 2
 3.2 GROUNDWATER CONDITIONS ... 3
4.0 RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION 4
 4.1 GENERAL ASSESSMENT ... 4
 4.2 SEWER LINE CONSTRUCTION .. 4
5.0 GENERAL COMMENTS ... 8

APPENDIX A – FIELD EXPLORATION
 Field Exploration Description
 Test Boring Logs

APPENDIX B – LABORATORY TESTING
 Laboratory Testing
 Laboratory Data

APPENDIX C – SUPPORTING DOCUMENTS
 General Notes (including Description of Rock Properties)
 Unified Soil Classification
June 25, 2010

City of Bellevue, Ohio
3000 Seneca Industrial Parkway
Bellevue, Ohio 44811

Attention: Mr. Kevin Scagnetti
City Engineer
P : [419] 484 5500
E : kevin.scagnetti@cityofbellevue.com

Regarding: Geotechnical Engineering Report
Sanitary Sewer Extension Project – Phase I
US Route 20
Bellevue, Ohio
Terracon Project No. N4105037

Dear Mr. Scagnetti:

H. C. Nutting – A Terracon Company (Terracon) is pleased to submit our Geotechnical Engineering Report for the Sanitary Sewer Extension Project – Phase I planned along US Route 20 in Bellevue, Ohio.

Our geotechnical study was performed in general accordance with our proposal number PN4100151 dated April 16, 2010 and written authorization dated April 20, 2010. The subsurface exploration phase for this project was initiated on May 22, 2010 and was completed on May 25, 2010.

We appreciate the opportunity to be of service to you on this project and look forward to providing additional Geotechnical Engineering and Construction Materials Testing services as the project progresses to its detailed design and construction phases. Please contact us if you have any questions or if we can be of further assistance.

Sincerely,

H.C. NUTTING - A Terracon COMPANY

Prasad S. Rege, P.E.
Office Manager/ Principal

Kevin M. Ernst, P.E.
Geotechnical Department Manager
EXECUTIVE SUMMARY

A geotechnical study has been performed for the proposed sanitary sewer extension project planned along US Route 20 in Bellevue, Ohio. Twelve (12) test borings were completed as a part of this geotechnical study.

Based on the information obtained from our subsurface exploration program, the following geotechnical considerations were identified:

- Our subsurface exploration program indicated that the depth to competent shale and limestone bedrock along the sanitary sewer alignment varied from about 8 to 13.6 feet below the existing ground surface.

- It is anticipated that conventional sewer construction procedures could be implemented within sections of the sewer project which are not bedrock controlled (bedrock not encountered at or above the proposed sewer invert elevation). However, very moist to wet and marginal strength native overburden soils should be anticipated during the sewer excavation process.

- Deeper sewer excavations in areas controlled by bedrock (excavation through the competent bedrock stratum is anticipated) are expected to require significant effort which will result in increased project excavation costs relative to excavation only within the overburden soils. Since the proposed sewer is located along an existing roadway (US Route 20), use of blasting techniques to facilitate rock excavation does not appear to be a feasible option along the majority of the proposed alignment.

- Based on our subsurface findings it is anticipated that the jack and bore construction technique proposed for the length of the sewer pipe crossing below the existing Prairie Road (in the vicinity of test borings B-8 and B-9) will require advancing the near-horizontal steel casing through competent shale and limestone bedrock formations.

This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled GENERAL COMMENTS should be read for an understanding of the report limitations.
1.0 INTRODUCTION

Terracon is pleased to submit our Geotechnical Engineering Report for the proposed sanitary sewer extension project planned along US Route 20 in Bellevue, Ohio. Our geotechnical study was performed in general accordance with our proposal number PN4100151 dated April 16, 2010 and written authorization dated April 20, 2010. The subsurface exploration phase for this project was initiated on May 22, 2010 and was completed on May 25, 2010.

The purpose of this report is to describe the subsurface conditions encountered in the twelve (12) test borings drilled for this study, analyze and evaluate the test data, and provide recommendations with respect to:

- Subsurface Soil Conditions
- Groundwater Conditions
- Design and Construction Considerations

2.0 PROJECT INFORMATION

Site Location

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location and site description</td>
<td>The proposed sewer extension project (Phase I) is planned along the north shoulder of the west bound lane of US Route 20 in Bellevue, Ohio. The project will start at Station 60+20.72 and end at approximate Station 90+00 according to the provided plan and profile drawing developed by GGJ, Inc., dated July 2008.</td>
</tr>
<tr>
<td>Current ground cover</td>
<td>Unpaved shoulder consisting of dense graded aggregate with occasional asphalt driveways and grass covered right of way.</td>
</tr>
<tr>
<td>Existing topography</td>
<td>Ground surface along the sanitary sewer alignment appears to range approximately from elevation 762 feet to 779 feet.</td>
</tr>
</tbody>
</table>
Project Description

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewer Line</td>
<td>Provided information indicates that the proposed sewer line will be constructed in the same trench as that for a proposed water line (to be constructed at a later time) but will be set deeper. The invert depth for the sewer line appears to vary from approximately 8 feet to 20 feet below the existing ground surface. The sewer pipe will consist of a 10-inch diameter SDR 35 PVC pipe. Provided information indicates that jack and bore construction technique will need to be implemented for the length of the sewer pipe crossing below the existing Prairie Road.</td>
</tr>
</tbody>
</table>

Should any of the above information or assumptions be inconsistent with the planned construction, please let us know so that we may make necessary modifications to this report.

3.0 SUBSURFACE CONDITIONS

3.1 Typical Soil Profile

Based on the results of the borings, subsurface conditions on the project site can be generalized as indicated in the following table:

<table>
<thead>
<tr>
<th>Description</th>
<th>Approximate Depth to Bottom of Stratum</th>
<th>Material Encountered</th>
<th>Consistency/Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratum 1</td>
<td>1 inch to 18 inches</td>
<td>Topsoil</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Stratum 2</td>
<td>5.5 to 13 feet</td>
<td>Native glacial till soils consisting of cohesive: lean clay with sand and sandy lean clay with various proportions of gravel size constituents and rock fragments; and fine textured granular soils: clayey sand, silty sand, poorly graded sand, with various proportions of silt and gravel size constituents and rock fragments</td>
<td>Cohesive Soils – medium stiff to very stiff consistency Granular Soils – very loose to medium dense relative density</td>
</tr>
<tr>
<td>Description</td>
<td>Approximate Depth to Bottom of Stratum</td>
<td>Material Encountered</td>
<td>Consistency/Density</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Stratum 3</td>
<td>10 to 25 feet (test boring termination depth at test boring locations B-1, B-2, B-3, B-4, B-5, B-6, B-11, and B-12)</td>
<td>Native soils consisting of fat clay (completely weathered shale bedrock)</td>
<td>Very stiff to hard</td>
</tr>
</tbody>
</table>
| Stratum 4 | 25 feet (test boring termination depth at test boring locations B-8 and B-9) | Shale and Limestone Bedrock | Shale bedrock – very soft to medium hard according to bedrock hardness rating
Limestone bedrock – moderately hard to hard according to bedrock hardness rating |

Note: Auger refusal condition encountered on limestone bedrock surface at an approximate depth range of 8 to 13.6 feet at test boring locations B-7, B-8, B-9, B-10, B-11, and B-12; rock coring performed to an approximate depth of 25 feet at test boring locations B-8 and B-9.

Conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. Details for each of the borings can be found on the boring logs in Appendix A of this report.

3.2 Groundwater Conditions

The boreholes were observed during and after completion of drilling for the presence and level of groundwater. The water levels observed are noted on the attached boring logs. The table below provides a summary of the test borings where groundwater was encountered during our subsurface exploration:

<table>
<thead>
<tr>
<th>Boring Number</th>
<th>Depth to groundwater while drilling (ft.)</th>
<th>Depth to groundwater after drilling (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-5</td>
<td>WD – 5.5</td>
<td>ACR – 16</td>
</tr>
<tr>
<td>B-6</td>
<td>WD – 8</td>
<td>ACR – 8</td>
</tr>
<tr>
<td>B-7</td>
<td>WD – 5.5</td>
<td>ACR – 5.5</td>
</tr>
<tr>
<td>B-8</td>
<td>WD – 3*</td>
<td>ACR – 3*</td>
</tr>
<tr>
<td>B-9</td>
<td>WD – 3*</td>
<td>ACR – 3*</td>
</tr>
<tr>
<td>B-12</td>
<td>WD – 38</td>
<td>ACR – 8</td>
</tr>
</tbody>
</table>

WCI – Wet cave-in condition after augers were withdrawn
WD - While drilling
ACR – After Casing Removal
*Water added during the rock coring operation. Groundwater reading influenced by external water source

Long term observations in piezometers or observation wells sealed from the influence of surface water are often required to define groundwater levels in materials of this type. Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed.

4.0 RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION

4.1 General Assessment

Our subsurface exploration program indicated that the depth to competent shale and limestone bedrock along the sanitary sewer alignment varied from about 8 to 13.6 feet below the existing ground surface. It is anticipated that conventional sewer construction procedures could be implemented within sections of the sewer project which are not bedrock controlled (that is, bedrock not encountered at or above the proposed sewer invert elevation). However, very moist to wet and marginal strength native overburden soils should be anticipated during the sewer excavation process.

Deeper sewer excavations in areas controlled by bedrock (which will require excavation through the competent bedrock stratum) are expected to require significant effort which will result in increased project costs relative to excavation only in the overburden soils. Since the proposed sewer is located along an existing roadway (US Route 20), use of blasting techniques to facilitate rock excavation does not appear to be a feasible option along the majority of the proposed alignment. Based on our findings, it is anticipated that the jack and bore construction technique proposed for the length of the sewer pipe crossing below the existing Prairie Road (in the vicinity of test borings B-8 and B-9) will require advancing the near-horizontal steel casing through competent shale and limestone bedrock formations.

Our geotechnical recommendations are presented in the sections that follow.

4.2 Sewer Line Construction

4.2.1 Excavation for Sewer Line

We have summarized relevant geotechnical information collected during our subsurface exploration and laboratory testing program for the sewer alignment which appears on the
Geotechnical Engineering Report
Sanitary Sewer Extension Project – Phase I
US Route 20, Bellevue, Ohio
June 25, 2010
Terracon Project No. N4105037

provided plan and profile drawing developed by GGJ, Inc. and dated July 2008. This information is presented below in a tabulated format.

<table>
<thead>
<tr>
<th>Test Boring Number</th>
<th>Proposed Sewer Invert Elevation (feet)</th>
<th>Corresponding Depth Below Existing Ground Surface (feet)</th>
<th>Potential Issues Related to Sewer Line Excavation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>754</td>
<td>8.5</td>
<td>Fat clays (completely weathered shale) anticipated at the bottom of sewer excavation</td>
</tr>
<tr>
<td>B-2</td>
<td>754</td>
<td>8.5</td>
<td>Fat clays (completely weathered shale) anticipated at the bottom of sewer excavation</td>
</tr>
<tr>
<td>B-3</td>
<td>755</td>
<td>10</td>
<td>Fat clays (completely weathered shale) anticipated at the bottom of sewer excavation</td>
</tr>
<tr>
<td>B-4</td>
<td>755.5</td>
<td>15</td>
<td>Loose and wet granular soils within the uppermost 3 feet of the excavation; fat clays (completely weathered shale) anticipated at the bottom of sewer excavation</td>
</tr>
<tr>
<td>B-5</td>
<td>756.5</td>
<td>19.5</td>
<td>Loose and very moist to wet granular soils within the uppermost 8 feet of the excavation; fat clays (completely weathered shale) anticipated at the bottom of sewer excavation</td>
</tr>
<tr>
<td>B-6</td>
<td>757</td>
<td>22.5</td>
<td>Loose and very moist granular soils and very moist cohesive soils within the uppermost 10.5 feet of the excavation; fat clays (completely weathered shale) anticipated at the bottom of sewer excavation below this depth</td>
</tr>
<tr>
<td>B-7</td>
<td>757.5</td>
<td>20.5</td>
<td>Soft to medium stiff and very moist cohesive soils and very loose and wet granular soils within the uppermost 8 feet of the excavation; auger refusal at 8-foot depth on apparent shale and limestone bedrock – expect difficult rock excavation below this depth</td>
</tr>
<tr>
<td>B-8</td>
<td>758</td>
<td>20</td>
<td>Loose and wet granular soils within the uppermost 10 feet of the excavation; competent shale and limestone bedrock encountered at 10 feet depth – expect difficult rock excavation below this depth</td>
</tr>
<tr>
<td>Test Boring Number</td>
<td>Proposed Sewer Invert Elevation (feet)</td>
<td>Corresponding Depth Below Existing Ground Surface (feet)</td>
<td>Potential Issues Related to Sewer Line Excavation</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>B-9</td>
<td>758</td>
<td>19</td>
<td>Loose and wet granular soils within the uppermost 11 feet of the excavation; competent shale and limestone bedrock encountered at 11 feet depth – expect difficult rock excavation below this depth</td>
</tr>
<tr>
<td>B-10</td>
<td>759.5</td>
<td>17.5</td>
<td>Very moist to wet cohesive and granular soils within the uppermost 8 feet of the excavation; auger refusal at 8-foot depth on apparent shale and limestone bedrock – expect difficult rock excavation below this depth</td>
</tr>
<tr>
<td>B-11</td>
<td>760</td>
<td>18</td>
<td>Very moist cohesive soils within the uppermost 8 feet of the excavation; auger refusal at 12-foot depth on apparent shale and limestone bedrock – expect difficult rock excavation below this depth</td>
</tr>
<tr>
<td>B-12</td>
<td>761</td>
<td>19</td>
<td>Very moist and medium stiff cohesive soils and wet and very loose granular soils within the uppermost 8 feet of the excavation; auger refusal at 13.6-foot depth on apparent shale and limestone bedrock – expect difficult rock excavation below this depth</td>
</tr>
</tbody>
</table>

Excavations at this project site should be performed in accordance with governing safety regulations. All vehicles and soil piles should be kept back from the crest of excavation slopes. The stability of excavation slopes should be reviewed continuously by qualified personnel. The responsibility for excavation safety and temporary construction slopes lies solely with the contractor.

OSHA Excavation Regulations classify a cohesive soil with a soft to very soft consistency or granular soil as a Type “C” soil. A Type “C” classification requires open excavation slopes for the sewer pipe and manhole installation to be no steeper than 1.5H:1V. Similarly, OSHA Excavation Regulations classify a cohesive soil with a medium stiff to stiff consistency as a Type “B” soil. A Type “B” classification requires open excavation slopes for the sewer pipe and manhole installation to be no steeper than 1H:1V. These criteria are acceptable provided the depth of excavation within the overburden soils does not exceed 20 feet. If the required temporary excavation slopes are not feasible due to practical restrictions imposed
by existing utilities, right-of-way, etc., then a shield-type (trench box) or temporary bracing system should be considered.

We anticipate that excavations through native overburden soils and completely weathered shale bedrock will be accomplished with a typical backhoe or large hydraulic excavator. However, deeper excavations into shale/limestone bedrock formation will require significant effort. It is likely that hoe rams, rock trenchers, rock saws, and/or rock splitters will be needed to excavate through the bedrock. Significant project costs should be anticipated associated with this rock excavation operation.

Providing detailed recommendations related to the jack and bore construction technique for the length of the sewer pipe crossing the existing Prairie Road is not within the scope of our services.

4.2.2 Sewer Line Bedding and Backfill

The limited subsurface exploration performed along the proposed sewer alignment indicates that completely weathered shale bedrock, as well as, competent shale and limestone bedrock would be exposed at the sewer invert level and proposed manhole bottom level. If soft to medium stiff, loose, or otherwise unsuitable bearing soils are exposed at the proposed bearing elevations, we recommend that these soils be undercut up to a depth of 1 foot and the foundation grade be reestablished with dense graded aggregate fill, such as crushed stone, until a stable base is created.

Bedding material should consist of a clean granular soil with a maximum fragment size of 1.5 inches or less. Suitable material types per the Unified Soil Classification System would include SW, SP, GW, and GP. Bedding material type should conform to the requirements of the ODOT Construction and Materials Specification’s latest edition and pipe manufacturer’s recommendations.

Upon completion of bedding placement and sewer line construction, the sewer trench should be backfilled with structural fill up to proposed finish grade. Selected structural fill should be free of organics, debris, and other deleterious substances and have a plasticity index between 10 and 20. Note that some of the existing overburden soils do not meet this requirement and have higher PI values. We recommend that the engineered fill have a moisture content within about 3 percent of its optimum value and be placed in maximum 6 to 8 inch loose lifts and be uniformly compacted to at least 98 percent of standard proctor density, ASTM D698. Structural backfill within the limits of pavement areas and zone of influence of the roadway pavement sections should also conform to the requirements of the latest edition of the ODOT Construction and Materials Specifications.
5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The analysis and preliminary recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others.

In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.
APPENDIX A
FIELD EXPLORATION
Field Exploration Description

Twelve (12) test borings were performed during our subsurface exploration program. The test boring locations were selected and marked in the field by Terracon personnel. Ground surface elevations at the individual boring locations were interpolated from the provided plan and profile drawing developed by GGJ, Inc. and dated July 2008. The elevations indicated on the attached boring logs have been rounded to the nearest one half foot. Some of the boring locations were offset from the staked location due to overhead utility conflicts. These off-sets are noted on the individual test boring logs. The test boring locations have been identified by the approximate station marking system utilized on the provided plan and profile drawing. The locations and elevations of the borings should be considered accurate only to the degree implied by the means and methods used to define them.

The borings were drilled with an ATV-mounted, rotary drill rig using hollow-stemmed augers to advance the boreholes. Representative samples were obtained using split-barrel sampling procedures. In the split-barrel sampling procedure, a standard 2-inch O.D. split-barrel sampling spoon is driven into the ground with a 140-pound hammer falling a distance of 30 inches. An automatic Standard Penetration Test (SPT) hammer was used to advance the split-barrel sampler in the borings performed on the site. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the standard penetration resistance value. These values are indicated on the boring logs at the depths of occurrence. The samples were sealed and returned to the laboratory for testing and classification. Rock coring, utilizing a NX diamond core barrel, was performed at test boring locations B-8 and B-9.
LOG OF BORING NO. B-1

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

PROJECT
Sanitary Sewer Extension Project - Phase I

Boring Location: Approximate Station 63+00

DESCRIPTION

Approx. Surface Elev.: 762.5 ft

TOPSOIL (18" THICK) 761
1.5

LEAN CLAY WITH SAND
Mottled brown and gray, very moist, stiff
- medium stiff below 3.0'

SANDY LEAN CLAY, noted silty sand seam with gravel and shale fragments
at 4.5'

LEAN CLAY (completely weathered shale)
Gray, moist, very stiff

BORING TERMINATED AT 10 ft

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.

WATER LEVEL OBSERVATIONS, ft

<table>
<thead>
<tr>
<th>WL</th>
<th>N/E</th>
<th>WD</th>
<th>ACR</th>
<th>DCI @ 7'</th>
</tr>
</thead>
</table>

BORING STARTED 5-23-10

BORING COMPLETED 5-23-10

RIG 93
FOREMAN KH

H. C. NUTTING

Terracon COMPANY

JOB # N4105037
LOG OF BORING NO. B-2

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

DESCRIPTION

Boring Location: Approximate Station 85+25

Approx. Surface Elev.: 762.5 ft

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Layer Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>Topsoil</td>
<td>(10" thick) 761.7</td>
</tr>
<tr>
<td>5.5</td>
<td>Lean Clay</td>
<td>Trace sand, trace gravel, Mottled brown and gray, very moist, stiff</td>
</tr>
<tr>
<td>7</td>
<td>Fat Clay</td>
<td>(completely weathered shale), Mottled gray and brown, moist, very stiff</td>
</tr>
<tr>
<td>12.5</td>
<td></td>
<td>BORING TERMINATED AT 12.5 ft</td>
</tr>
</tbody>
</table>

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

PROJECT
Sanitary Sewer Extension Project - Phase 1

SAMPLES

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Type</th>
<th>Recovered (Bolts)</th>
<th>Blows / 10 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SS</td>
<td>1-2.5</td>
<td>2-3-4, 7</td>
</tr>
<tr>
<td>2</td>
<td>SS</td>
<td>3.5-5</td>
<td>2-3-5, 8</td>
</tr>
<tr>
<td>3</td>
<td>SS</td>
<td>6-7.5</td>
<td>6-7-9, 16</td>
</tr>
<tr>
<td>4</td>
<td>SS</td>
<td>8.5-10</td>
<td>7-11-15, 26</td>
</tr>
<tr>
<td>5</td>
<td>SS</td>
<td>11-12.5</td>
<td>15-16-16, 32</td>
</tr>
</tbody>
</table>

TESTS

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample</th>
<th>Water Content</th>
<th>Plasticity Index</th>
<th>Unconfined Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>20</td>
<td></td>
<td>1.75</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>20</td>
<td></td>
<td>1.75</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>24</td>
<td></td>
<td>3.25</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>24</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>24</td>
<td></td>
<td>4.5</td>
</tr>
</tbody>
</table>

WATER LEVEL OBSERVATIONS, ft

<table>
<thead>
<tr>
<th>WL</th>
<th>N/E</th>
<th>WD</th>
<th>ACR</th>
<th>DCI @ 8'</th>
</tr>
</thead>
</table>

BOARING STARTED 5-23-10

BOARING COMPLETED 5-23-10

RIG 93
FOREMAN KH

H. C. NUTTING

JOB # N4105037
LOG OF BORING NO. B-3

City of Bellevue

U.S. Route 20
Bellevue, Ohio

DESCRIPTION

Approx. Surface Elev.: 765 ft

<table>
<thead>
<tr>
<th>Depth, ft.</th>
<th>Number</th>
<th>Type</th>
<th>Depth, ft.</th>
<th>Recovery</th>
<th>Blows / 6 in. (SPT - ft)</th>
<th>Water Content, %</th>
<th>Liquid Limit, %</th>
<th>Plasticity Index, %</th>
<th>Unconfined Strength, lb/ft²</th>
<th>Penetrometer, lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SS</td>
<td>1-2.5</td>
<td>12</td>
<td>2-3-4</td>
<td>(7)</td>
<td>19</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SS</td>
<td>3.5-5</td>
<td>14</td>
<td>4-4-7</td>
<td>(11)</td>
<td>18</td>
<td>31</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>SS</td>
<td>6-7.5</td>
<td>18</td>
<td>6-7-8</td>
<td>(15)</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SS</td>
<td>8.5-10</td>
<td>14</td>
<td>7-8-10</td>
<td>(18)</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>SS</td>
<td>11-12.5</td>
<td>18</td>
<td>17-20-21</td>
<td>(41)</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BORING TERMINATED AT 12.5 ft

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

Note: Test boring was moved approximately 6 feet south due to the presence of an overhead power line.

WATER LEVEL OBSERVATIONS, ft

<table>
<thead>
<tr>
<th>WL</th>
<th>N/E</th>
<th>WD</th>
<th>ACR</th>
<th>DCI @ 8'</th>
</tr>
</thead>
</table>

BORING STARTED 5-23-10

BORING COMPLETED 5-23-10

FOREMAN KH

The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.
LOG OF BORING NO. B-4

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

PROJECT
Sanitary Sewer Extension Project - Phase I

DESCRIPTION

Approx. Surface Elev.: 770 ft

0.3’ TOPSOIL (3’ THICK)

CLAYEY SAND, trace gravel and shale fragments
Brown and gray, wet, very loose

LEAN CLAY WITH SAND, trace gravel and shale fragments
Gray and brown, moist, very stiff

FAT CLAY (completely weathered shale)
Gray, moist, very stiff to hard

BORING TERMINATED AT 15 ft

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

Note: Test boring was moved approximately 7 feet south due to the presence of an overhead power line.

The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.

WATER LEVEL OBSERVATIONS, ft

<table>
<thead>
<tr>
<th>WL</th>
<th>N/E</th>
<th>WD</th>
<th>ACR</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/E</td>
<td>ACR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCI @ 12'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BORING STARTED 5-23-10
BORING COMPLETED 5-23-10

RIG 93
FOREMAN KH

JOB # N4105037
LOG OF BORING NO. B-5

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

Boring Location: Approximate Station 73+00

DESCRIPTION

Approx. Surface Elev.: 776 ft

- **TOPSOIL (3" THICK)**
 - **SILTY SAND WITH GRAVEL** and rock fragments
 - Reddish brown, moist, loose
 - **CLAYEY SAND**, trace gravel and shale fragments
 - Brown, very moist, loose
 - **POORLY GRADED SAND WITH SILT AND FINE GRAVEL** and shale fragments
 - Brown, wet, loose
 - **LEAN CLAY WITH SAND**, trace gravel and shale fragments
 - Gray, very moist, very stiff
 - **FAT CLAY** (completely weathered shale)
 - Gray, moist, very stiff to hard

BORING TERMINATED AT 20 ft

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

PROJECT
Sanitary Sewer Extension Project - Phase I

SAMPLES

<table>
<thead>
<tr>
<th>DEPTH, ft</th>
<th>NUMBER</th>
<th>TYPE</th>
<th>DEPTH, ft</th>
<th>RECQV, in. (RD%)</th>
<th>BLOWS/6 in. (SPT-N)</th>
<th>WATER CONTENT, %</th>
<th>LIQUID LIMIT, %</th>
<th>PLASTICITY INDEX</th>
<th>UNCONFINED STRENGTH, psf</th>
<th>POCKET PENETRATION, Psf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SS</td>
<td>1</td>
<td>2.5</td>
<td>18</td>
<td>2-3-3 (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SS</td>
<td>3.5</td>
<td>5</td>
<td>18</td>
<td>4-3-3 (6)</td>
<td>20</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SS</td>
<td>6</td>
<td>7.5</td>
<td>18</td>
<td>3-3-3 (6)</td>
<td>3.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SS</td>
<td>8.5</td>
<td>10</td>
<td>18</td>
<td>4-5-7 (12)</td>
<td>18</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SS</td>
<td>11</td>
<td>12.5</td>
<td>18</td>
<td>5-6-8 (14)</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SS</td>
<td>13.5</td>
<td>15</td>
<td>18</td>
<td>7-9-11 (20)</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SS</td>
<td>18.5</td>
<td>20</td>
<td>18</td>
<td>15-28-31 (59)</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.

WATER LEVEL OBSERVATIONS, ft

<table>
<thead>
<tr>
<th>WL</th>
<th>WD</th>
<th>ACRA</th>
<th>WCL @ 20'</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

H. C. NUTTING

BORING STARTED 5-23-10
BORING COMPLETED 5-23-10
RIG 93 **FOREMAN** KH

JOB # N4105037

TERRACON COMPANY
LOG OF BORING NO. B-6

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

Boring Location: Approximate Station 75+50

DESCRIPTION

Approx. Surface Elev.: 779.5 ft

<table>
<thead>
<tr>
<th>DEPTH, ft</th>
<th>DEPTH, ft.</th>
<th>RECOVERY, %</th>
<th>BLOWS / (ft. - N)</th>
<th>WATER CONTENT, %</th>
<th>LIQUID LIMIT, %</th>
<th>PLASTICITY INDEX, %</th>
<th>UNCONFINED STRENGTH, lbf.</th>
<th>POCKET PENETRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>1</td>
<td>2 - 2.5</td>
<td>14</td>
<td>3-2-3 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>2</td>
<td>3.5 - 5</td>
<td>14</td>
<td>2-3-4 (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>6 - 7.5</td>
<td>15</td>
<td>5-3-3 (8)</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>10.5</td>
<td>4</td>
<td>8.5 - 10</td>
<td>12</td>
<td>1-7-5 (12)</td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>11 - 12.5</td>
<td>18</td>
<td>14-14-38 (52)</td>
<td></td>
<td></td>
<td></td>
<td>4.5+</td>
</tr>
<tr>
<td>15.5</td>
<td>6</td>
<td>13.5 - 15</td>
<td>18</td>
<td>20-20-37 (57)</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>18.5 - 20</td>
<td>16</td>
<td>10-14-23 (37)</td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>23.5 - 24.3</td>
<td>10</td>
<td>28-50/52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BORING TERMINATED AT 25 ft

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.

WATER LEVEL OBSERVATIONS, ft

<table>
<thead>
<tr>
<th>WL</th>
<th>WD</th>
<th>ACR</th>
<th>WCI @ 18'</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BORING STARTED 5-25-10
BORING COMPLETED 5-25-10
RIG 93
FOR Foreman KH

JOB #: N4105037
LOG OF BORING NO. B-7

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

Boring Location: Approximate Station 77+50

DESCRIPTION

- Approx. Surface Elev.: 778 ft
- 0.3 ft TOPSOIL (3" THICK)
 - SANDY LEAN CLAY, trace fine gravel
 - Mottled yellowish brown and gray, very moist, soft
 - 3 ft SANDY LEAN CLAY WITH GRAVEL and shale fragments
 - Dark brown, very moist, medium stiff
 - 5.5 ft CLAYEY SAND with fine to coarse rock fragments
 - Brown and yellowish brown, wet, very loose
 - Auger refusal at 8.0'

BORING TERMINATED AT 8 ft

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

PROJECT
Sanitary Sewer Extension Project - Phase I

SAMPLES

<table>
<thead>
<tr>
<th>DEPTH, ft</th>
<th>NUMBER</th>
<th>TYPE</th>
<th>DEPTH, ft</th>
<th>RECOV. %</th>
<th>BLOWS / 6 in. (SPF - N)</th>
<th>WATER CONTENT, %</th>
<th>LIQUID LIMIT, %</th>
<th>PLASTICITY INDEX, %</th>
<th>UNCONFINED STRENGTH, psi</th>
<th>POCKET PENETRATION, in</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SS</td>
<td>1 - 2.5</td>
<td>18</td>
<td>2-2-3 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SS</td>
<td>3.5 - 5</td>
<td>16</td>
<td>3-4-5 (9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SS</td>
<td>6 - 7.5</td>
<td>17</td>
<td>2-1-25 (28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.

WATER LEVEL OBSERVATIONS, ft

<table>
<thead>
<tr>
<th>WL</th>
<th>5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD</td>
<td>5</td>
</tr>
<tr>
<td>ACR</td>
<td>5.5</td>
</tr>
<tr>
<td>WCI @ 5.5'</td>
<td></td>
</tr>
</tbody>
</table>
LOG OF BORING NO. B-8

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

GRAPHIC LOG

<table>
<thead>
<tr>
<th>Approx. Surface Elev.: 778 ft</th>
</tr>
</thead>
</table>

DESCRIPTION

TOPSOIL (4" THICK)

- **CLAYEY SAND**
 - Brown and gray, very moist, loose

- **SILTY SAND**
 - Trace fine gravel
 - Brown, wet, medium dense
 - With gravel and shale fragments below 6.0'

- **CLAYEY SAND WITH FINE GRAVEL**
 - And shale fragments
 - Gray, wet, medium dense

- **GRAY SHALE AND GRAY LIMESTONE**
 - Core 10-11.5 Feet
 - Shale comprises 50% of the core run; is very soft, thinly bedded and friable.
 - Limestone comprises 50% of the core run and is hard; limestone occurs in two layers which are approximately 7" and 2" thick.

- **GRAY LIMESTONE WITH GRAY SHALE LAYERS**
 - Core 11.5-16.5 Feet
 - Limestone comprises 95% and is hard. Limestone layers over 1" thick occur in following sequence of thickness: 6"; 4"; 3"; 1.5"; 2"; 4.5"; 6"; 2.5"; 3"; 3.75"; 4.75"; 7".
 - Shale comprises 5%, is very soft, thinly bedded and friable.

- **GRAY SHALE WITH GRAY LIMESTONE LAYERS**
 - Core 16.5-21.5 Feet
 - Shale comprises 61% and is very soft to soft, thinly bedded and friable.
 - Limestone comprises 39% and is hard. Limestone layers over 1" thick occur in following sequence of thickness: 4"; 2.75"; 3"; 7.5"; 3".

SAMPLES

<table>
<thead>
<tr>
<th>DEPTH, ft</th>
<th>NUMBER</th>
<th>TYPE</th>
<th>DEPTH, ft.</th>
<th>RECOVER. %</th>
<th>BLOWS/6in.</th>
<th>WATER CONTENT, %</th>
<th>LIQUID LIMIT, %</th>
<th>PLASTICITY INDEX, %</th>
<th>UNCONFINED STRENGTH, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SS</td>
<td>1 - 2.5</td>
<td>15</td>
<td>2-2-3</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SS</td>
<td>3.5 - 5</td>
<td>18</td>
<td>4-5-8</td>
<td>(13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SS</td>
<td>6 - 7.5</td>
<td>18</td>
<td>5-8-7</td>
<td>(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SS</td>
<td>8.5 - 8.7</td>
<td>8</td>
<td>10-50/2"</td>
<td>14</td>
<td>23</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>NX</td>
<td>10 - 11.5</td>
<td>9</td>
<td>(39)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>NX</td>
<td>11.5 - 16.5</td>
<td>58</td>
<td>(47)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>NX</td>
<td>16.5 - 21.5</td>
<td>60</td>
<td>(17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>NX</td>
<td>21.5 - 25</td>
<td>42</td>
<td>(63)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WATER LEVEL OBSERVATIONS

| WL | 3 | ACR |
|WL | WCI @ 6' |

BORING STARTED
5-23-10

BORING COMPLETED
5-25-10

JOB
N4105037

The stratification lines represent the approximate boundary lines between soil and rock types; in-situ, the transition may be gradual.
CORE 21.5-25 FEET:

GRAY SHALEY LIMESTONE AND GRAY SHALE

Shaley limestone comprises 52% and is moderately hard. Limestone layers over 1" thick occur in the following sequence of thickness: 6.5"; 8"; 3.5"; 3.75"; 3".

Shale comprises 48% and is soft to medium hard. Shale is thinly bedded and fossiliferous.

BORING TERMINATED AT 10 FT

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

* Water added during the rock coring operation. Groundwater reading influenced by external water source.
LOG OF BORING NO. B-9

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

PROJECT
Sanitary Sewer Extension Project - Phase I

DESCRIPTION

Approx. Surface Elev.: 777 ft

- TOPSOIL (3" THICK) 776.7

Silty Sand
Brown and gray, very moist, loose

3

Silty sand, trace gravel
Light brown, wet, loose

5.5 771.5

Clayey Sand with fine to coarse gravel and rock fragments
Light brown and gray, wet, medium dense

8 769

Silty Sand with fine to coarse gravel and rock fragments
- noted limestone cobble
Dark brown and black, very moist, medium dense

11 761

Gray Limestone with Gray Shale LAYERS
Limestone comprises 75% and is hard. Vertical joint, discontinuous and approximately 9.5" in length noticed at 11 feet depth. Limestone layers over 1" thick occur in following sequence of thickness: 8.5"; 2"; 3.75"; 3.5"; 4"; 1.5"; 9.25"; 3.5"; 4"; 2.5"; 2"; 2.25"; 2.5"; 2.25"; 6.75"; 4.5"; 1.5"; 3.5"; 4.75"; 6"; 6.5".

Shale comprises 25% and is very soft, thinly bedded and friable.

16 761

Continued Next Page

The stratification lines represent the approximate boundary lines between soil and rock types. In-situ, the transition may be gradual.

WATER LEVEL OBSERVATIONS, ft

WL 3
WL 3 ACR
WL WCI @ 7'

BORING STARTED 5-23-10
BORING COMPLETED 5-25-10
RIG 93 FOREMAN KH
JOB # N4105037
LOG OF BORING NO. B-9

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

PROJECT
Sanitary Sewer Extension Project - Phase I

<table>
<thead>
<tr>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Core 16-21 Feet: GRAY LIMESTONE AND GRAY SHALE</td>
</tr>
<tr>
<td></td>
<td>Limestone comprises 50% and is hard. Limestone layers over 1" thick occur in following sequence of thickness: 5.25"; 2"; 2"; 3.25"; 2.5"; 2.25"; 6.75"; 4.5"; 1.5".</td>
</tr>
<tr>
<td></td>
<td>Shale comprises 50% and is very soft to soft, thinly bedded and friable.</td>
</tr>
<tr>
<td>25</td>
<td>Core 21-25 Feet: GRAY SHALEY LIMESTONE AND GRAY SHALE</td>
</tr>
<tr>
<td></td>
<td>Shaley limestone comprises 50% and is moderately hard. Limestone layers over 1" thick occur in following sequence of thickness: 3.5"; 4.75"; 6"; 6.5".</td>
</tr>
<tr>
<td></td>
<td>Shale comprises 50% and is soft to medium hard. Shale is thinly bedded and fossiliferous.</td>
</tr>
<tr>
<td></td>
<td>BORING TERMINATED AT 11 ft</td>
</tr>
</tbody>
</table>

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

* Water added during the rock coring operation. Groundwater reading influenced by this external water source.

WATER LEVEL OBSERVATIONS, ft

<table>
<thead>
<tr>
<th>WL</th>
<th>3</th>
<th>V</th>
<th>ACR</th>
<th>WCI @ 7'</th>
</tr>
</thead>
</table>

BORING STARTED 5-23-10

BORING COMPLETED 5-25-10

RIG 93

FOREMAN KH

JOB # N4105037

The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.
LOG OF BORING NO. B-10

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

PROJECT
Sanitary Sewer Extension Project - Phase I

GRAPHIC LOG

Approx. Surface Elev.: 777 ft

0-6
TOPSOIL (10" THICK)

SANDY LEAN CLAY, trace gravel
Dark brown and yellowish brown, very moist, medium stiff

3
CLAYEY SAND, trace gravel and rock fragments (limestone)
Yellowish brown, wet, loose
- with gravel and limestone fragments below 6.0'

8
Auger refusal at 8.0'

BORING TERMINATED AT 8 ft

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

BORING STARTED 5-23-10
BORING COMPLETED 5-23-10

WATER LEVEL OBSERVATIONS, ft

WL N/E WD
WL N/E ACR
WL DCI @ 6'

H.C. NUTTING

TERRACON COMPANY

JOB # N4105037
LOG OF BORING NO. B-11

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

PROJECT
Sanitary Sewer Extension Project - Phase I

DESCRIPTION

- **Approx. Surface Elev.:** 778 ft

<table>
<thead>
<tr>
<th>GRAPHIC LOG</th>
<th>TOPSOIL (10" THICK)</th>
<th>777.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>LEAN CLAY, trace sand, trace gravel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mottled yellowish brown and gray, very moist, stiff</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FAT CLAY, trace rock fragments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mottled yellowish brown and gray, very moist, stiff</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Noted limestone fragments at 7.5'</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>FAT CLAY (completely weathered shale)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gray, moist, hard</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Auger refusal at 12.0'</td>
<td></td>
</tr>
</tbody>
</table>

BORING TERMINATED AT 12'

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

SAMPLES AND TESTS

<table>
<thead>
<tr>
<th>DEPTH, ft</th>
<th>NUMBER</th>
<th>TYPE</th>
<th>DEPTH, ft</th>
<th>RECOV, in (RCD %)</th>
<th>BLOWS / 6in. (SPT-N)</th>
<th>WATER CONTENT, %</th>
<th>LIQUID LIMIT, %</th>
<th>PLASTICITY INDEX, %</th>
<th>UNCONFINED STRENGTH, lbf/ft²</th>
<th>POCKET PEN, lbf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SS</td>
<td>1-2.5</td>
<td>14</td>
<td>2-4-4 (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>SS</td>
<td>3.5-5</td>
<td>18</td>
<td>3-3-4 (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>SS</td>
<td>6-7.5</td>
<td>7</td>
<td>33-56/4"</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.75</td>
</tr>
<tr>
<td>4</td>
<td>SS</td>
<td>8.5-10</td>
<td>10</td>
<td>22-26-28 (54)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5+</td>
</tr>
<tr>
<td>5</td>
<td>SS</td>
<td>11-11.5</td>
<td>6</td>
<td>28-50/1"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5+</td>
</tr>
</tbody>
</table>

The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.

WATER LEVEL OBSERVATIONS, ft

<table>
<thead>
<tr>
<th>WL</th>
<th>N/E</th>
<th>WD</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL</td>
<td>N/E</td>
<td>ACR</td>
</tr>
<tr>
<td>WL</td>
<td>DCI @ 8'</td>
<td></td>
</tr>
</tbody>
</table>

BORING STARTED 5-23-10

BORING COMPLETED 5-23-10

H.C. NUTTING

RIG 93 **FOREMAN** KH

TERRACON COMPANY

JOB # N4105037
LOG OF BORING NO. B-12

CLIENT
City of Bellevue

SITE
U.S. Route 20
Bellevue, Ohio

PROJECT
Sanitary Sewer Extension Project - Phase I

<table>
<thead>
<tr>
<th>SAMPLES</th>
<th>TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPTH, ft</td>
<td>TYPE</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>0.1</td>
<td>TOPSOIL (1" THICK)</td>
</tr>
<tr>
<td>3</td>
<td>SANDY LEAN CLAY, trace gravel and rock fragments</td>
</tr>
<tr>
<td>5.5</td>
<td>CLAYEY SAND WITH FINE GRAVEL, and rock fragments</td>
</tr>
<tr>
<td>8</td>
<td>SILTY SAND WITH FINE GRAVEL, and rock fragments</td>
</tr>
<tr>
<td>10.5</td>
<td>SANDY SILTY CLAY with rock fragments (shale)</td>
</tr>
<tr>
<td>13</td>
<td>FATTY CLAY, trace sand (completely weathered shale)</td>
</tr>
<tr>
<td>13.6</td>
<td>LIMESTONE</td>
</tr>
</tbody>
</table>

Note: Ground surface elevation interpolated from the provided plan and profile drawing.

The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.

WATER LEVEL OBSERVATIONS, ft

WL	3	WD
8	ACR	
9	WCI @ 9'	

BORING STARTED
5-22-10

BORING COMPLETED
5-22-10

RIG
93

FOREMAN
KH

H. C. NUTTING

JOB #
N4105037
APPENDIX B
LABORATORY TESTING
Laboratory Testing

Representative soil samples were tested in the laboratory to measure their natural water content. A hand penetrometer was used to estimate the approximate unconfined compressive strength of representative cohesive samples. The hand penetrometer has been correlated with unconfined compression tests and provides a better estimate of soil consistency than visual examination alone. The test results are provided on the boring logs included in Appendix A.

Descriptive classifications of the soils indicated on the boring logs are in accordance with the enclosed General Notes and the Unified Soil Classification System. A brief description of this classification system is attached to this report. Rock descriptions are per the attached general notes. All classification was by visual manual procedures. Selected samples were further classified using the results of Atterberg limit testing and gradation analyses. The Atterberg limit test results are also provided on the boring logs. Laboratory data has been included in Appendix B.
LIQUID AND PLASTIC LIMITS TEST REPORT

Dashed line indicates the approximate upper limit boundary for natural soils.

<table>
<thead>
<tr>
<th>MATERIAL DESCRIPTION</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>%<#40</th>
<th>%<#200</th>
<th>USCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mottled gray and brown FAT CLAY (completely weathered shale)</td>
<td>55</td>
<td>20</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project No. N4105037 Client: City of Bellevue

Project: U.S. Route 20 Sanitary Sewer Extension Phase I

Source of Sample: B-2 Depth: 6.0'-7.5' Sample Number: S-3

Remarks:

- HCN Lab No. 403
- Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Tested By: VP Checked By: AM
LIQUID AND PLASTIC LIMITS TEST REPORT

Dashed line indicates the approximate upper limit boundary for natural soils.

<table>
<thead>
<tr>
<th>MATERIAL DESCRIPTION</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>%<#40</th>
<th>%<#200</th>
<th>USCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown trace gray LEAN CLAY with sand, trace gravel and shale fragments</td>
<td>31</td>
<td>18</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project No: N4105037 Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase I

* Source of Sample: B-3 Depth: 3.5'-5.0' Sample Number: S-2

Remarks:
- HCN Lab No. 404
- Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Tested By: VP Checked By: AM
Particle Size Distribution Report

GRAIN SIZE - mm:

<table>
<thead>
<tr>
<th>% +3"</th>
<th>% Gravel</th>
<th>% Sand</th>
<th>% Fines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse</td>
<td>Fine</td>
<td>Coarse</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>8.4</td>
<td>7.7</td>
</tr>
</tbody>
</table>

SIEVE SIZE | PERCENT FINER | SPEC. | PASS? |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>96.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>91.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>83.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>76.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>68.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>40.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>31.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Description
Brown and gray CLAYEY SAND trace fine gravel and shale fragments

Atterberg Limits
- PL = 15
- LL = 24
- PI = 9

Coefficients
- D_90 = 3.8815
- D_60 = 0.2117
- D_10 = 0.0481
- C_u =
- C_c =

Classification
USCS = SC
AASHTO =

Remarks

Source of Sample: B-4
Sample Number: S-1

Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase I
Project No: N4105037

Tested By: VP
Checked By: AM
LIQUID AND PLASTIC LIMITS TEST REPORT

Dashed line indicates the approximate upper limit boundary for natural soils.

<table>
<thead>
<tr>
<th>MATERIAL DESCRIPTION</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>%<#40</th>
<th>%<#200</th>
<th>USCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown and gray CLAYEY SAND trace fine gravel and shale fragments</td>
<td>24</td>
<td>15</td>
<td>9</td>
<td>68.7</td>
<td>31.8</td>
<td>SC</td>
</tr>
</tbody>
</table>

Project No. N4105037 Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase I

Source of Sample: B-4 Depth: 1.0'-2.5' Sample Number: S-1

Remarks:
- HCN Lab No. 405
Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Tested By: VP
Checked By: AM
Particle Size Distribution Report

Grain Size - mm.

% +3" % Gravel % Sand % Fines
 Coarse Fine Coarse Medium Fine Silt Clay
0.0 0.0 4.7 14.3 26.7 13.2 19.3 21.8

Sieve Size Percent Finer Spec. Per Pass?
 " % PERCENT PERCENT (X=NO)
3/8 100.0
#4 95.3
#10 81.0
#20 64.8
#40 54.3
#100 44.3
#200 41.1

* (no specification provided)

Material Description
Brown CLAYEY SAND, trace gravel and shale fragments

Atterberg Limits
PL =
LL =

Coefficients
D_90 = 3.2622
D_60 = 2.4641
D_30 = 0.2954
D_10 =

Classification
USCS =
AASHTO =

Remarks

Source of Sample: B-5 Depth: 3.5'-5.0'
Sample Number: S-2 Date: 6-14-10

H.C. Nutting Project: City of Bellevue
A Terracon Company U.S. Route 20 Sanitary Sewer Extension Phase I
Columbus, Ohio Project No: N4105037

Tested By: VP Checked By: AM
Particle Size Distribution Report

GRAIN SIZE - mm.

<table>
<thead>
<tr>
<th>% +3"</th>
<th>% Gravel</th>
<th>% Sand</th>
<th>% Finer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse</td>
<td>Fine</td>
<td>Coarse</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>39.8</td>
<td>7.8</td>
</tr>
</tbody>
</table>

SIEVE SIZE	PERCENT FINER	SPEC.\(^*\) PERCENT	PASS? (X=NO)
3/4 | 100.0 | | |
1/2 | 82.4 | | |
3/8 | 73.2 | | |
#4 | 60.2 | | |
#10 | 52.4 | | |
#20 | 48.2 | | |
#40 | 44.2 | | |
#100 | 14.6 | | |
#200 | 11.1 | | |

* (no specification provided)

Material Description
Brown poorly graded SAND with silt, with fine gravel and shale fragments

Atterberg Limits
PL = NP LL = NV PI = NP

Coefficients
D_{90} = 15.2789 D_{85} = 13.5659 D_{60} = 4.6701
D_{50} = 1.3855 D_{30} = 0.2570 D_{15} = 0.1533
D_{10} = 0.0357 C_{U} = 130.85 C_{C} = 0.40

Classification
USCS = SP-SM AASHTO =

Remarks

Source of Sample: B-5 Depth: 6.0'-7.5'
Sample Number: S-3

Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase I
Project No: N4105037

Tested By: VP Checked By: AM
Particle Size Distribution Report

<table>
<thead>
<tr>
<th>SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC. PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>97.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>92.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>79.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>61.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>39.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>22.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>20.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Description
Brown SILTY SAND, trace fine gravel

Atterberg Limits
PL = NP
LL = NV
Pl = NP

Coefficients
D90 = 3.9024
D85 = 2.8057
D70 = 0.5967
D10 = 0.0059
C_U = 137.48
C_C = 16.39

Classification
USCS = SM
AASHTO =

Remarks

Source of Sample: B-6
Sample Number: S-1

Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase I

Project No: N4105037

Tested By: VP
Checked By: AM
These results are for the exclusive use of the client for whom they were obtained. They apply only to the samples tested and are not indicative of apparently identical samples.
Particle Size Distribution Report

GRAIN SIZE - mm.

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>98.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>90.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>79.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>70.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>42.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>31.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Material Description
Brown SILTY SAND, trace fine gravel

Atterberg Limits
PL= NP
LL= NV
PL= NP

Coefficients
D90= 1.9871
D85= 1.3612
D80= 0.2821
D50= 0.1990
D30= 0.0636
D15= 0.0111
Cu= 52.65
Cc= 2.68

Classification
USCS= SM
AASHTO=

Remarks
HCN Lab No. 411

Source of Sample: B-8
Sample Number: S-2
Depth: 3.5'-5.0'
Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase 1
Project No: N4105037
Figure

Tested By: VP
Checked By: AM
Particle Size Distribution Report

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC. * PERCENT (X=NO)</th>
<th>PASS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>89.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>75.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>60.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>50.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>44.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>37.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>33.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Material Description
Gray CLAYEY SAND with fine gravel and shale fragments

Atterberg Limits
PL = 13
LL = 23
PI = 10

Coefficients
D90 = 9.6988
D60 = 8.1052
D30 = 0.0305
D10 = 0.7984
C_u =
C_c =

Classification
USCS = SC
AASHTO =

Remarks

Source of Sample: B-8
Sample Number: S-4
Depth: 8.5'-10.0'

Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase I
Project No: N4105037
Figure

Date: 6-14-10

Tested By: VP
Checked By: AM
LIQUID AND PLASTIC LIMITS TEST REPORT

Dashed line indicates the approximate upper limit boundary for natural soils

<table>
<thead>
<tr>
<th>MATERIAL DESCRIPTION</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>%<#40</th>
<th>%<#200</th>
<th>USCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray CLAYEY SAND with fine gravel and shale fragments</td>
<td>23</td>
<td>13</td>
<td>10</td>
<td>44.4</td>
<td>33.6</td>
<td>SC</td>
</tr>
</tbody>
</table>

Project No. N4105037 Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase I

- Source of Sample: B-8 Depth: 8.5'-10.0' Sample Number: S-4

Remarks:
- HCN Lab No. 412
 Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Tested By: VP
Checked By: AM
Particle Size Distribution Report

Material Description
Light brown and gray CLAYEY SAND with fine to coarse gravel and rock fragments

Atterberg Limits

<table>
<thead>
<tr>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL = [21.3210]</td>
</tr>
<tr>
<td>P1 = [41.84131]</td>
</tr>
<tr>
<td>D90 = [0.1882]</td>
</tr>
<tr>
<td>D50 = [0.0221]</td>
</tr>
<tr>
<td>D10 = [0.0031]</td>
</tr>
<tr>
<td>Cu = [0.3659]</td>
</tr>
<tr>
<td>Cc = [0.0031]</td>
</tr>
</tbody>
</table>

Classification

AASHTO =

Remarks

HCN Lab No. 413

Source of Sample: R-9
Depth: 6'0"-7.5'
Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase I
Project No: N4105037
Figure

Tested By: VP
Checked By: AM
Particle Size Distribution Report

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>82.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>82.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>78.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>74.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>64.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>51.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>44.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>39.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>31.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>27.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Description
Dark brown and black SILTY SAND with fine to coarse gravel and rock fragments

Atterberg Limits

\begin{align*}
\text{PL} &= 15.9 \\
\text{LL} &= 11.1 \\
\end{align*}

Coefficients

\begin{align*}
D_{90} &= 31.6509 \\
D_{50} &= 28.0463 \\
D_{10} &= 1.7192 \\
D_{50} &= 0.1219 \\
D_{10} &= 0.0031 \\
C_{u} &= 1157.82 \\
C_{c} &= 1.32 \\
\end{align*}

Classification

AASHTO=

Remarks

HCN Lab No. 414

Source of Sample: B-9 Depth: 8.5'-10.0' Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase I
Project No: N4105037

Tested By: VP Checked By: AM
Particle Size Distribution Report

GRAIN SIZE - mm.

<table>
<thead>
<tr>
<th>% +3"</th>
<th>% Gravel</th>
<th>% Sand</th>
<th>% Fines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse</td>
<td>Fine</td>
<td>Coarse</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>23.4</td>
<td>8.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>98.1</td>
<td>76.6</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>68.1</td>
<td>64.4</td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>60.2</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(no specification provided)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Description
Reddish brown CLAYEY SAND with fine gravel and rock fragments

Atterberg Limits

<table>
<thead>
<tr>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL=</td>
</tr>
<tr>
<td>LL=</td>
</tr>
<tr>
<td>PI=</td>
</tr>
<tr>
<td>D90= 7.0463</td>
</tr>
<tr>
<td>D85= 6.1250</td>
</tr>
<tr>
<td>D50= 0.2870</td>
</tr>
<tr>
<td>D10=</td>
</tr>
<tr>
<td>Cu=</td>
</tr>
<tr>
<td>Cc=</td>
</tr>
</tbody>
</table>

Classification

USCS= AASHTO=

Remarks

Source of Sample: B-12
Sample Number: S-2
Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase I
Project No: N4105037
Figure

Tested By: VP
Checked By: AM
Material Description
Brown SILTY SAND with fine gravel and rock fragments

Atterberg Limits
PL = NP
LL = NV
Pl = NP

Coefficients
D90 = 8.9757
D85 = 7.3054
D50 = 1.2430
D10 = 0.0111
Cu = 227.39
Cv = 3.15

Classification
USCS = AASHTO=

Remarks

Source of Sample: B-12
Sample Number: S-3

Date: 6-14-10

H.C. Nutting
A Terracon Company
Columbus, Ohio

Client: City of Bellevue
Project: U.S. Route 20 Sanitary Sewer Extension Phase I
Project No: N4105037

Tested By: VP
Checked By: AM
APPENDIX C
SUPPORTING DOCUMENTS
GENERAL NOTES

DRILLING & SAMPLING SYMBOLS:
- **SS**: Split Spoon - 1-2/3" I.D., 2" O.D., unless otherwise noted
- **ST**: Thin-Walled Tube – 2" O.D., 3" O.D., unless otherwise noted
- **RS**: Ring Sampler - 2.42" I.D., 3" O.D., unless otherwise noted
- **DB**: Diamond Bit Coring - 4", N, B
- **BS**: Bulk Sample or Auger Sample
- **HS**: Hollow Stem Auger
- **PA**: Power Auger (Solid Stem)
- **HA**: Hand Auger
- **RB**: Rock Bit
- **WB**: Wash Boring or Mud Rotary

The number of blows required to advance a standard 2-inch O.D. split-spoon sampler (SS) the last 12 inches of the total 18-inch penetration with a 140-pound hammer falling 30 inches is considered the “Standard Penetration” or “N-value”.

WATER LEVEL MEASUREMENT SYMBOLS:
- **WL**: Water Level
- **WS**: While Sampling
- **BCR**: Before Casing Removal
- **WCI**: Wet Cave in
- **WD**: While Drilling
- **ACR**: After Casing Removal
- **DCI**: Dry Cave in
- **AB**: After Boring
- **N/E**: Not Encountered

Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. Groundwater levels at other times and other locations across the site could vary. In pervious soils, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels may not be possible with only short-term observations.

DESCRIPTIVE SOIL CLASSIFICATION: Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

CONSISTENCY OF FINE-GRAINED SOILS

<table>
<thead>
<tr>
<th>Unconfined Compressive Strength, Qu, psf</th>
<th>Standard Penetration or N-value (SS)</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 500</td>
<td>0 - 1</td>
<td>Very Soft</td>
</tr>
<tr>
<td>500 – 1,000</td>
<td>2 - 4</td>
<td>Soft</td>
</tr>
<tr>
<td>1,000 – 2,000</td>
<td>4 - 8</td>
<td>Medium Stiff</td>
</tr>
<tr>
<td>2,000 – 4,000</td>
<td>8 - 15</td>
<td>Stiff</td>
</tr>
<tr>
<td>4,000 – 8,000</td>
<td>15 - 30</td>
<td>Very Stiff</td>
</tr>
<tr>
<td>8,000+</td>
<td>> 30</td>
<td>Hard</td>
</tr>
</tbody>
</table>

RELATIVE DENSITY OF COARSE-GRAINED SOILS

<table>
<thead>
<tr>
<th>Relative Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 3</td>
</tr>
<tr>
<td>4 – 9</td>
</tr>
<tr>
<td>10 – 29</td>
</tr>
<tr>
<td>30 – 50</td>
</tr>
<tr>
<td>> 50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Loose</td>
</tr>
<tr>
<td>Loose</td>
</tr>
<tr>
<td>Medium Dense</td>
</tr>
<tr>
<td>Dense</td>
</tr>
<tr>
<td>Very Dense</td>
</tr>
</tbody>
</table>

RELATIVE PROPORTIONS OF SAND AND GRAVEL

<table>
<thead>
<tr>
<th>Trace</th>
<th>With</th>
<th>Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 15</td>
<td>15 – 29</td>
<td>≥ 30</td>
</tr>
</tbody>
</table>

GRAIN SIZE TERMINOLOGY

<table>
<thead>
<tr>
<th>Major Component of Sample</th>
<th>Particle Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulders</td>
<td>Over 12 in. (300mm)</td>
</tr>
<tr>
<td>Cobble</td>
<td>12 in. to 3 in. (300mm to 75mm)</td>
</tr>
<tr>
<td>Gravel</td>
<td>3 in. to #4 sieve (75mm to 4.75mm)</td>
</tr>
<tr>
<td>Sand</td>
<td>#4 to #200 sieve (4.75 to 0.075mm)</td>
</tr>
</tbody>
</table>

RELATIVE PROPORTIONS OF FINES

<table>
<thead>
<tr>
<th>Trace</th>
<th>With</th>
<th>Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5</td>
<td>5 – 12</td>
<td>> 12</td>
</tr>
</tbody>
</table>

PLASTICITY DESCRIPTION

<table>
<thead>
<tr>
<th>Term</th>
<th>Plasticity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-plastic</td>
<td>0</td>
</tr>
<tr>
<td>Low</td>
<td>1-10</td>
</tr>
<tr>
<td>Medium</td>
<td>11-30</td>
</tr>
<tr>
<td>High</td>
<td>> 30</td>
</tr>
</tbody>
</table>
GENERAL NOTES
Description of Rock Properties

WEATHERING

Fresh
Rock fresh, crystals bright, few joints may show slight staining. Rock rings under hammer if crystalline.

Very slight
Rock generally fresh, joints stained, some joints may show thin clay coatings, crystals in broken face show bright. Rock rings under hammer if crystalline.

Slight
Rock generally fresh, joints stained, and discoloration extends into rock up to 1 in. Joints may contain clay. In granitoid rocks some occasional feldspar crystals are dull and discolored. Crystalline rocks ring under hammer.

Moderate
Significant portions of rock show discoloration and weathering effects. In granitoid rocks, most feldspars are dull and discolored; some show clayey. Rock has dull sound under hammer and shows significant loss of strength as compared with fresh rock.

Moderately severe
All rock except quartz discolored or stained. In granitoid rocks, all feldspars dull and discolored and majority show kaolinization. Rock shows severe loss of strength and can be excavated with geologist’s pick.

Severe
All rock except quartz discolored or stained. Rock “fabric” clear and evident, but reduced in strength to strong soil. In granitoid rocks, all feldspars kaolinized to some extent. Some fragments of strong rock usually left.

Very severe
All rock except quartz discolored or stained. Rock “fabric” discernible, but mass effectively reduced to “soil” with only fragments of strong rock remaining.

Complete
Rock reduced to “soil”. Rock “fabric” not discernible or discernible only in small, scattered locations. Quartz may be present as dikes or stringers.

HARDNESS (for engineering description of rock – not to be confused with Moh’s scale for minerals)

Very hard
Cannot be scratched with knife or sharp pick. Breaking of hand specimens requires several hard blows of geologist’s pick.

Hard
Can be scratched with knife or pick only with difficulty. Hard blow of hammer required to detach hand specimen.

Moderate hard
Can be scratched with knife or pick. Gouges or grooves to ¼ in. deep can be excavated by hard blow of point of a geologist’s pick. Hand specimens can be detached by moderate blow.

Medium
Can be grooved or gouged 1/16 in. deep by firm pressure on knife or pick point. Can be excavated in small chips to pieces about 1-in. maximum size by hard blows of the point of a geologist’s pick.

Soft
Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure.

Very soft
Can be carved with knife. Can be excavated readily with point of pick. Pieces 1-in. or more in thickness can be broken with finger pressure. Can be scratched readily by fingernail.

Joint, Bedding and Foliation Spacing in Rock

<table>
<thead>
<tr>
<th>Spacing</th>
<th>Joints</th>
<th>Bedding/Foliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 2 in.</td>
<td>Very close</td>
<td>Very thin</td>
</tr>
<tr>
<td>2 in. – 1 ft.</td>
<td>Close</td>
<td>Thin</td>
</tr>
<tr>
<td>1 ft. – 3 ft.</td>
<td>Moderately close</td>
<td>Medium</td>
</tr>
<tr>
<td>3 ft. – 10 ft.</td>
<td>Wide</td>
<td>Thick</td>
</tr>
<tr>
<td>More than 10 ft.</td>
<td>Very wide</td>
<td>Very thick</td>
</tr>
</tbody>
</table>

Rock Quality Designator (RQD)

<table>
<thead>
<tr>
<th>RQD, as a percentage</th>
<th>Diagnostic description</th>
<th>Openness</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceeding 90</td>
<td>Excellent</td>
<td>No Visible Separation</td>
<td>Tight</td>
</tr>
<tr>
<td>90 – 75</td>
<td>Good</td>
<td>Less than 1/32 in.</td>
<td>Slightly Open</td>
</tr>
<tr>
<td>75 – 50</td>
<td>Fair</td>
<td>1/32 to 1/8 in.</td>
<td>Moderately Open</td>
</tr>
<tr>
<td>50 – 25</td>
<td>Poor</td>
<td>1/8 to 3/8 in.</td>
<td>Open</td>
</tr>
<tr>
<td>Less than 25</td>
<td>Very poor</td>
<td>3/8 in. to 0.1 ft.</td>
<td>Moderately Wide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greater than 0.1 ft.</td>
<td>Wide</td>
</tr>
</tbody>
</table>

a. Spacing refers to the distance normal to the planes, of the described feature, which are parallel to each other or nearly so.

b. RQD (given as a percentage) = length of core in pieces 4 in. and longer/length of run.

References:
Unified Soil Classification System

<table>
<thead>
<tr>
<th>Gravels</th>
<th>More than 50% of coarse fraction retained on No. 200 sieve</th>
<th>Clean Gravels</th>
<th>Less than 5% fines</th>
<th>Gravels with Fines</th>
<th>More than 12% fines</th>
<th>Group Name</th>
<th>Group Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cu ≥ 4 and 1 ≤ Cc ≤ 3<sup>e</sup></td>
<td>Cu < 4 and/or 1 > Cc > 3<sup>e</sup></td>
<td>Fines classify as CL or CH</td>
<td>Fines classify as ML or MH</td>
<td>GW, GP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clean Sands</td>
<td>Less than 5% fines</td>
<td>Clean Sands</td>
<td>Less than 5% fines</td>
<td>SW, SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu ≥ 6 and 1 ≤ Cc ≤ 3<sup>e</sup></td>
<td>Cu < 6 and/or 1 > Cc > 3<sup>e</sup></td>
<td>Fines classify as CL or CH</td>
<td>Fines classify as ML or MH</td>
<td>GM, GC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sands with Fines</td>
<td>More than 12% fines</td>
<td>Sands with Fines</td>
<td>More than 12% fines</td>
<td>GM, GC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fines classify as ML or MH</td>
<td>Fines classify as ML or MH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sands</th>
<th>50% or more of coarse fraction passes No. 4 sieve</th>
<th>Clean Sands</th>
<th>Less than 5% fines</th>
<th>Sands with Fines</th>
<th>More than 12% fines</th>
<th>Group Name</th>
<th>Group Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cu ≥ 6 and 1 ≤ Cc ≤ 3<sup>e</sup></td>
<td>Cu < 6 and/or 1 > Cc > 3<sup>e</sup></td>
<td>Fines classify as CL or CH</td>
<td>Fines classify as ML or MH</td>
<td>SW, SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clean Sands</td>
<td>Less than 5% fines</td>
<td>Clean Sands</td>
<td>Less than 5% fines</td>
<td>SW, SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu ≥ 6 and 1 ≤ Cc ≤ 3<sup>e</sup></td>
<td>Cu < 6 and/or 1 > Cc > 3<sup>e</sup></td>
<td>Fines classify as CL or CH</td>
<td>Fines classify as ML or MH</td>
<td>SW, SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sands with Fines</td>
<td>More than 12% fines</td>
<td>Sands with Fines</td>
<td>More than 12% fines</td>
<td>SW, SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fines classify as ML or MH</td>
<td>Fines classify as ML or MH</td>
<td></td>
<td></td>
<td>SW, SP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sands</th>
<th>50% or more passes the No. 200 sieve</th>
<th>Silts and Clays</th>
<th>Liquid limit less than 50</th>
<th>Group Name</th>
<th>Group Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silts and Clays</td>
<td>Inorganic</td>
<td>PI > 7 and plots on or above “A” line</td>
<td>CL, LM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organics</td>
<td>PI plots below “A” line</td>
<td>ML</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid limit - oven dried</td>
<td>< 0.75</td>
<td>OL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid limit - not dried</td>
<td>> 0.75</td>
<td>OL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silts and Clays</td>
<td>Inorganic</td>
<td>PI plots on or above “A” line</td>
<td>CH, LM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organics</td>
<td>PI plots below “A” line</td>
<td>MH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid limit - oven dried</td>
<td>< 0.75</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid limit - not dried</td>
<td>> 0.75</td>
<td>OH</td>
<td></td>
</tr>
</tbody>
</table>

Highly organic soils

<table>
<thead>
<tr>
<th></th>
<th>Primarily organic matter, dark in color, and organic odor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PT</td>
</tr>
</tbody>
</table>

\(A \) Based on the material passing the 3-in. (75-mm) sieve

\(B \) If field sample contained cobbles or boulders, or both, add “with cobbles or boulders, or both” to group name.

\(C \) Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.

\(D \) Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

\(E \) \(Cu = D_{60}/D_{10} \) \(Cc = (D_{60})^2 / D_{50} \times D_{60} \)

\(F \) If soil contains ≥ 15% sand, add “with sand” to group name.

\(G \) If fines classify as CL-ML, use dual symbol GC-GM, or SC-SC.

\(H \) If fines are organic, add “with organic fines” to group name.

\(I \) If soil contains ≥ 15% gravel, add “with gravel” to group name.

\(J \) If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

\(K \) If soil contains 15 to 29% plus No. 200, add “with sand” or “with gravel,” whichever is predominant.

\(L \) If soil contains ≥ 30% plus No. 200 predominantly sand, add “sandy” to group name.

\(M \) If soil contains ≥ 30% plus No. 200, predominantly gravel, add “gravelly” to group name.

\(N \) PI plots on or above “A” line.

\(O \) PI plots below “A” line.

\(P \) PI plots on or above “A” line.

\(Q \) PI plots below “A” line.

\(R \) If fines are organic, add “with organic fines” to group name.

\(S \) If soil contains ≥ 15% gravel, add “with gravel” to group name.

\(T \) If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

\(U \) If soil contains 15 to 29% plus No. 200, add “with sand” or “with gravel,” whichever is predominant.

\(V \) If soil contains ≥ 30% plus No. 200 predominantly sand, add “sandy” to group name.

\(W \) If soil contains ≥ 30% plus No. 200, predominantly gravel, add “gravelly” to group name.

\(X \) PI plots on or above “A” line.

\(Y \) PI plots below “A” line.

\(Z \) PI plots below “A” line.